Fire up GraphLab Create


In [1]:
import graphlab

Load some house sales data


In [2]:
sf = graphlab.SFrame('home_data.gl/')


This non-commercial license of GraphLab Create for academic use is assigned to sudhanshu.shekhar.iitd@gmail.com and will expire on September 18, 2017.
[INFO] graphlab.cython.cy_server: GraphLab Create v2.1 started. Logging: /tmp/graphlab_server_1474241627.log

In [3]:
sales = sf

In [4]:
sales


Out[4]:
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront
7129300520 2014-10-13 00:00:00+00:00 221900 3 1 1180 5650 1 0
6414100192 2014-12-09 00:00:00+00:00 538000 3 2.25 2570 7242 2 0
5631500400 2015-02-25 00:00:00+00:00 180000 2 1 770 10000 1 0
2487200875 2014-12-09 00:00:00+00:00 604000 4 3 1960 5000 1 0
1954400510 2015-02-18 00:00:00+00:00 510000 3 2 1680 8080 1 0
7237550310 2014-05-12 00:00:00+00:00 1225000 4 4.5 5420 101930 1 0
1321400060 2014-06-27 00:00:00+00:00 257500 3 2.25 1715 6819 2 0
2008000270 2015-01-15 00:00:00+00:00 291850 3 1.5 1060 9711 1 0
2414600126 2015-04-15 00:00:00+00:00 229500 3 1 1780 7470 1 0
3793500160 2015-03-12 00:00:00+00:00 323000 3 2.5 1890 6560 2 0
view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat
0 3 7 1180 0 1955 0 98178 47.51123398
0 3 7 2170 400 1951 1991 98125 47.72102274
0 3 6 770 0 1933 0 98028 47.73792661
0 5 7 1050 910 1965 0 98136 47.52082
0 3 8 1680 0 1987 0 98074 47.61681228
0 3 11 3890 1530 2001 0 98053 47.65611835
0 3 7 1715 0 1995 0 98003 47.30972002
0 3 7 1060 0 1963 0 98198 47.40949984
0 3 7 1050 730 1960 0 98146 47.51229381
0 3 7 1890 0 2003 0 98038 47.36840673
long sqft_living15 sqft_lot15
-122.25677536 1340.0 5650.0
-122.3188624 1690.0 7639.0
-122.23319601 2720.0 8062.0
-122.39318505 1360.0 5000.0
-122.04490059 1800.0 7503.0
-122.00528655 4760.0 101930.0
-122.32704857 2238.0 6819.0
-122.31457273 1650.0 9711.0
-122.33659507 1780.0 8113.0
-122.0308176 2390.0 7570.0
[21613 rows x 21 columns]
Note: Only the head of the SFrame is printed.
You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

Exploring the data for housing


In [5]:
sales.show()


Canvas is accessible via web browser at the URL: http://localhost:54562/index.html
Opening Canvas in default web browser.

In [6]:
graphlab.canvas.set_target('ipynb')

In [7]:
sales.show(view='Scatter Plot', x='sqft_living', y='price')


Create a simple regression model for sqft_living v/s price


In [9]:
train_dataset, test_dataset = sales.random_split(.8, seed=0)

Build the regression model


In [10]:
sqft_model = graphlab.linear_regression.create(train_dataset, target='price', features=['sqft_living'])


PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
          You can set ``validation_set=None`` to disable validation tracking.

Linear regression:
--------------------------------------------------------
Number of examples          : 16550
Number of features          : 1
Number of unpacked features : 1
Number of coefficients    : 2
Starting Newton Method
--------------------------------------------------------
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| Iteration | Passes   | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| 1         | 2        | 1.020379     | 4350333.447369     | 1768744.090955       | 263220.266380 | 257393.722223   |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
SUCCESS: Optimal solution found.

Evaluate the simple model


In [11]:
print test_dataset['price'].mean()


543054.042563

In [12]:
print sqft_model.evaluate(test_dataset)


{'max_error': 4144226.701603405, 'rmse': 255192.49630115367}

Let's show what our predictions look like


In [16]:
import matplotlib.pyplot as plt
%matplotlib inline

In [17]:
plt.plot(test_dataset['sqft_living'], test_dataset['price'], '.',
        test_dataset['sqft_living'], sqft_model.predict(test_dataset), '-'
        )


Out[17]:
[<matplotlib.lines.Line2D at 0x124f495d0>,
 <matplotlib.lines.Line2D at 0x124f49690>]

In [19]:
sqft_model.get('coefficients')


Out[19]:
name index value stderr
(intercept) None -47168.499925 5041.52919943
sqft_living None 281.895025108 2.21598508346
[2 rows x 4 columns]

Explore other data


In [21]:
my_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']

In [22]:
sales[my_features].show()



In [24]:
sales.show(view='BoxWhisker Plot', x='zipcode', y='price')


Build a regression model with more features


In [25]:
my_features_model = graphlab.linear_regression.create(train_dataset, target='price', features=my_features)


PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
          You can set ``validation_set=None`` to disable validation tracking.

Linear regression:
--------------------------------------------------------
Number of examples          : 16482
Number of features          : 6
Number of unpacked features : 6
Number of coefficients    : 115
Starting Newton Method
--------------------------------------------------------
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| Iteration | Passes   | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| 1         | 2        | 0.036841     | 3757587.679293     | 2583304.420120       | 181683.836387 | 190587.117671   |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
SUCCESS: Optimal solution found.


In [26]:
print sqft_model.evaluate(test_dataset)
print my_features_model.evaluate(test_dataset)


{'max_error': 4144226.701603405, 'rmse': 255192.49630115367}
{'max_error': 3480086.29817522, 'rmse': 179394.03976785974}

Apply learned model to 3 different houses of the dataset


In [27]:
house1 = sales[sales['id'] == '5309101200']

In [28]:
house1


Out[28]:
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront
5309101200 2014-06-05 00:00:00+00:00 620000 4 2.25 2400 5350 1.5 0
view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat
0 4 7 1460 940 1929 0 98117 47.67632376
long sqft_living15 sqft_lot15
-122.37010126 1250.0 4880.0
[? rows x 21 columns]
Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.
You can use sf.materialize() to force materialization.

Testing HTML


In [29]:
print house1['price']


[620000, ... ]

In [30]:
print sqft_model.predict(house1)


[629379.5603350642]

In [32]:
print my_features_model.predict(house1)


[721234.7128401375]

Prediction for a second fancier house


In [33]:
house2 = sales[sales['id'] == '1925069082']

In [34]:
house2


Out[34]:
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront
1925069082 2015-05-11 00:00:00+00:00 2200000 5 4.25 4640 22703 2 1
view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat
4 5 8 2860 1780 1952 0 98052 47.63925783
long sqft_living15 sqft_lot15
-122.09722322 3140.0 14200.0
[? rows x 21 columns]
Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.
You can use sf.materialize() to force materialization.

In [35]:
print house2['price']


[2200000, ... ]

In [36]:
print sqft_model.predict(house2)


[1260824.4165777648]

In [37]:
print my_features_model.predict(house2)


[1440187.4614511132]

Even more fancier house


In [38]:
# it was Bill Gates house

In [39]:
house_temp = sales[['id']=='5309101200']

In [40]:
house_temp


Out[40]:
{'bathrooms': '1',
 'bedrooms': '3',
 'condition': 3,
 'date': datetime.datetime(2014, 10, 13, 0, 0, tzinfo=GMT +0.0),
 'floors': '1',
 'grade': 7,
 'id': '7129300520',
 'lat': 47.51123398,
 'long': -122.25677536,
 'price': 221900,
 'sqft_above': 1180,
 'sqft_basement': 0,
 'sqft_living': 1180,
 'sqft_living15': 1340.0,
 'sqft_lot': 5650,
 'sqft_lot15': 5650.0,
 'view': 0,
 'waterfront': 0,
 'yr_built': 1955,
 'yr_renovated': 0,
 'zipcode': '98178'}

In [ ]: